
Article

Volume 14, Number XX, 1–17

XX Month 2013

doi:10.1029/2012GC004424

ISSN: 1525-2027

Effects of lithospheric viscoelastic relaxation
on the contemporary deformation following the 1959
Mw 7.3 Hebgen Lake, Montana, earthquake
and other areas of the intermountain seismic belt

Wu-Lung Chang
Department of Earth Sciences, National Central University, Chungli, Taiwan (wuchang@ncu.edu.tw)

Robert B. Smith
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA

Christine M. Puskas
UNAVCO, Boulder, Colorado, USA

[1] The 1959 Mw 7.3 Hebgen Lake, MT, normal-faulting earthquake occurred in an extensional stress regime
near the Yellowstone volcanic field. Time-dependent crustal deformation data following this major earthquake
were acquired by precise trilateration and GPS surveys from 1973 to 2000 around the Hebgen Lake fault zone.
Modeling the changes of baseline lengths across and near the fault reveals a lateral variation of transient
rheology, in which the lithosphere is stronger near the Hebgen Lake fault zone than in the vicinity of
the Yellowstone volcano system. The models also imply that the lower crust is stronger than the upper
mantle, in agreement with results from studies of postseismic and post-lake-filling relaxations (<~100 years).
In addition, evaluations of the postseismic motion produced by the Hebgen Lake and the 1983Mw 6.9 Borah
Peak, ID, earthquakes indicate that horizontal transient motion of up to ~1mm/yr contribute significantly to
the contemporary regional crustal deformation near the epicentral areas. For the eastern Basin and Range,
~500 km south of the Hebgen Lake fault, similar rheologic models were derived from the observed uplift
associated with the Lake Bonneville rebound and were used to evaluate the postseismic deformation associated
with six most recent paleoearthquakes of the Wasatch fault zone and three M ≥ 5.6 historic earthquakes of
northern Utah. The results show ≤0.1mm/yr of horizontal postseismic motion at present time that are within
the horizontal uncertainties of continuous GPS velocity from the Basin and Range and significantly smaller than
the contemporary extension of 1–3mm/yr in the Wasatch Front.
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1. Introduction

[2] The effects of viscoelastic loading and relaxation
of the Earth’s lithosphere are key elements in post-
and interseismic stress associated with the earth-
quake cycle. An earthquake is assumed to generate
coseismic stresses in a ductile lower crust and upper
mantle, where materials are too weak to sustain
long-term shear stresses. The shear stresses are how-
ever released over decades following an earthquake.
Strains caused by the postseismic stress relaxation
are in turn transferred through the elastic upper crust,
producing observable transient deformation on the sur-
face [e.g., Thatcher, 1983; Pollitz, 2003a; Freed and
Bürgmann, 2004; Gourmelen and Amelung, 2005].

[3] The 1959Mw 7.3 Hebgen Lake, MT, earthquake,
the largest historic normal-faulting earthquake of the
Intermountain Seismic Belt [Smith and Sbar, 1974],
was located ~10 km northwest of the Yellowstone
volcanic system (Figure 1). The earthquake ruptured
38 km along two segments of the Hebgen Lake fault
zone with up to 6.1m of surface displacement [Doser,
1985; Barrientos et al., 1987]. Reilinger et al. [1977]
first observed a crustal uplift rate of 3–5mm/yr fol-
lowing the earthquake by precise leveling surveys
from 1923 to 1960 surrounding the epicenter and
aftershock area of the Hebgen Lake earthquake.
Further leveling measurements up to 1983 revealed
that this rate appeared to have decreased exponentially
with a characteristic decay time of about 10 years,
suggesting a rheologic model with a 30–40 km thick
elastic layer overlying a viscoelastic half-space with
a viscosity of ~1019 Pa-s [Reilinger, 1986].Nishimura
and Thatcher [2003, 2004] further developed a simi-
lar model based on leveling data acquired in 1959–
1987 around the Hebgen Lake fault, with 38� 8 km
for elastic thickness and 4� 1018�0.5 Pa-s for half-
space viscosity.

[4] In this study, we investigated the lithospheric
rheology beneath the Hebgen Lake fault zone using
deformation data obtained by trilateration and GPS
surveys between 1973 and 2000 [Savage et al.,
1993; Puskas et al., 2007], a period of 14–41 years
after the earthquake. The Hebgen Lake GPS and tri-
lateration baselines cross the fault at its largest offset
as well as the aftershock zone on the northwest
side of the Yellowstone Plateau (Figure 2). Time-
dependent changes of baseline lengths were used
to assess two-layer rheologic models: an elastic
layer above a viscoelastic layer and half-space that
corresponds to the upper crust, lower crust, and
upper mantle of the lithosphere, respectively.

[5] We then assessed the postseismic viscoelastic
effects to the contemporary crustal deformation in
two extensional stress regimes of the Intermountain
Seismic Belt. The combined postseismic deforma-
tion of the Hebgen Lake and theMw 6.9 1983 Borah
Peak, ID, earthquakes north of the Snake River Plain
was first evaluated. In the Wasatch fault zone, UT,
~500 km to the south of the Hebgen Lake fault and
on the east edge of the Basin and Range, postseismic
deformation was also modeled for the six most recent
Holocene paleoearthquakes and three large (M> 5.6)
historic earthquakes of northern Utah. Comparing
these results with the horizontal ground motion mea-
sured by GPS reveals how postseismic signals con-
tribute to the contemporary regional deformation,
and can thus affect notably (Snake River Plain) or
insignificantly (Wasatch) to the determination of in-
traplate kinematic models.

2. Seismic and Crustal Deformation
Observations

[6] The Hebgen Lake earthquake occurred in the
northern Intermountain Seismic Belt near the Yellow-
stone volcanic area. A catalog of relocated earth-
quakes (1973–2011) of the Yellowstone-Hebgen
Lake area, from a three-dimensional tomographi-
cally determined velocity model [Husen and Smith,
2004; Farrell et al., 2009], provided precise hypo-
center information of the Yellowstone volcanic field
and the southeast end of the Hebgen Lake fault zone.
Figure 2 shows that the 90th-percentile distribution of
focal depths, proposed to be a good estimate of the
brittle-ductile transition [Smith and Bruhn, 1984],
increases notably westward. This trend marks a sys-
tematic increase of the depths from ~5 km at the
Yellowstone caldera to ~10–15 km at the Hebgen
Lake fault zone, and further coincides with a signif-
icant decrease of thermal gradient in the crust from
70 �C/km to 25 �C/km [Smith and Braile, 1994].

[7] Trilateration and GPS techniques have been imple-
mented to determine the three-dimensional deforma-
tion field of the Hebgen Lake area (Figure 1). The
U.S. Geological Survey conducted seven trilatera-
tion surveys from 1973 to 1987 in the Hebgen Lake
area, measuring the distances between 10 geodetic
monuments with Geodolite, a precise laser-based
EDM (electro-optical distance measure) instrument
[Savage et al., 1993]. The data yield a uniaxial ex-
tensional strain rate of 0.266� 0.014 mstrain/yr
across the Hebgen Lake fault, with an orientation
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of N15�E � 1� that is nearly orthogonal to the
strike of the fault. This strain rate corresponds to
a displacement rate of ~10.6mm/yr across the
40 km aperture of the trilateration network.

[8] The University of Utah conducted GPS cam-
paigns in 1987, 1989, 1991, 1993, 1995, and 2000
in an area covering a 200 km wide zone of Yellow-
stone and the adjacent eastern Snake River Plain to
supplement the earlier geodetic surveys [Puskas,
2000, Puskas et al., 2007]. These campaigns sur-
veyed 140 sites of which 16 provide baselines that
span in the ~50 km aperture of the Hebgen Lake fault
zone (Figure 1). For each survey, the GPS receivers
were programmed to record a minimum of two
sessions of at least 8 h each. The 1987 and 1989 ses-
sions were a shorter 6–7 h, due to limited satellite vis-
ibility in the early period of GPS technology. Data in
a session were recorded at 30 s sampling intervals.

[9] In addition to the campaign GPS surveys, the
University of Utah and the Plate Boundary Observa-
tory have operated 10 continuous-recording GPS
stations in northwest Yellowstone since 2005 to
monitor ground movement across the Hebgen Lake
fault zone. Figure 1 shows the locations of these sta-
tions along with their average horizontal velocities
from 2005 to 2011 in a stable North American refer-
ence frame [Chang et al., 2006]. In this study, we
excluded GPS observations inside the Yellowstone
caldera, where ground motions of these sites have
been notably affected by the 2004–2010 episode of
accelerated caldera uplift [Chang et al., 2010].

[10] The campaign and continuous GPS data were
processed with Bernese 4.2 processing software
[Hugentobler et al., 2001]. Precise orbits from the
International GNSS Service were used for campaigns
from 1995 onwards. For earlier campaign surveys,
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Figure 1. Topographic map and geodetic network of the Yellowstone-Hebgen Lake study area. Dot-dashed lines G, H,
and I show leveling routes examined in this study (Figure 8). Thick black lines mark the surface ruptures of the 1959Mw
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orbit data from the Defense Mapping Agency and
Scripps Institution of Oceanography were used.
For each campaign, daily station positions and the
covariance matrix were first solved for in the
ITRF2005 reference frame and then combined to
obtain average coordinates and baseline lengths by
applying a technique of sequential least-squares es-
timation [Brockmann, 1996]. Readers are referred
to Puskas [2000] and Puskas et al. [2007] for details
on the GPS data processing of the Yellowstone-
Hebgen Lake network.

[11] Recent studies suggest that white noise plus
time-correlated color noise would be a more accurate
noise model for GPS measurements [e.g.,Mao et al.,
1999, Williams et al., 2004]. For campaign style
measurements separated in time by months to years,
however, the short-term temporal correlations im-
plied by color noise models should be less important
than that for continuous data [Williams et al., 2004].
Our campaign GPS data were gathered in periods of
no longer than 3months in a single year, so that it
would not be inappropriate to include only the white
noise in the baseline measurements (see Table S1 in
the auxiliary material).1 For estimations of continu-

ous GPS velocities, on the other hand, excluding
the color noises would reflect approximately only
the relative strength of the measurements but not re-
alistic uncertainties.

3. Modeling of Postseismic Viscoelastic
Relaxation for Lithospheric Rheology

3.1. Viscoelastic Deformation
From Baseline Changes
[12] The measurements of eight baselines from the
1973–2000 trilateration and GPS surveys (Figure 3)
were used to model the lithospheric rheology of the
Hebgen Lake fault zone (data along with their 1-s
errors are summarized in the auxiliary material).
Geodetic sites and baselines were chosen because:
(1) They were occupied at least four times in the
1973–1987 trilateration or 1987–2000 GPS survey
periods; (2) They are nearly orthogonal to the trace
of the 1959 fault rupture so that relative postseismic
motion between the hanging-wall and footwall of
the fault can be best sampled; (3) The ground motion
observations have relatively long time spans from
13 years up to 27 years. Note that three baselines,
AIRP-HOLM, AIRP-BIGN, and BIGN-LION, have
combined trilateration and GPS measurements
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Figure 2. Locations of 1973–2011 earthquakes (gray dots) in the Yellowstone-Hebgen Lake area recorded by the
University of Utah operated Yellowstone Seismic Network, with the 90th-percentile maximum focal-depths of three
profiles shown by black dashed lines. Bold black lines represent the surface traces of the 1959 Hebgen Lake rupture.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GC004424.
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overlapping in 1987 (Figure 3). Savage et al. [1996]
determined that EDM-measured baselines were sys-
tematically longer, by a factor of 0.283� 0.100 parts
per million, than the same baselines measured by
GPS. We thus applied this correction to combine
the two different geodetic observations into a consis-
tent dataset (Table S1).

[13] Effects other than viscoelastic relaxation, such
as afterslip and poroelastic rebound, may also con-
tribute to the observed postseismic deformation.
Afterslip can be the result of relaxation of a stress
perturbation within the velocity-strengthening re-
gion when an earthquake propagates into that region
from below [Marone et al., 1991], while poroelastic
rebound can be produced by the postseismic relaxa-
tion of pore-fluid pressure gradients induced by the
coseismic volume change of the country rock
around the fault [e.g., Peltzer et al., 1998]. Pollitz
et al. [2000], however, concluded that both afterslip
and poroelastic rebound were minor contributions
when considering the postseismic deformation pat-
tern 3 years after the 1992 Lander earthquake.
Because our geodetic observations were collected
beginning 14 years after the 1959 Hebgen Lake main
shock, these effects were not considered significant
for our modeling analysis.

[14] Because geodetic measurements of surface
deformation capture effects related to both time-
invariant (tectonic) and transient (here the postseismic)
processes, the former needs to be evaluated and
removed when the latter is used to model the litho-
spheric rheology [e.g., Hammond et al., 2009].
We also assumed that the steady state tectonic
deformation across the Hebgen Lake fault zone has

been mainly the uniaxial southwest extension of
the eastern Snake River Plain [Puskas et al.,
2007], where an average extensional strain rate of
~0.027 mstrain/yr was estimated (see the auxiliary
material).

3.2. Rheologic Modeling
[15] This study first implemented a two-layer model
for the lithospheric rheology beneath the Hebgen
Lake fault zone (Figure 4), with an elastic layer
overlying a viscoelastic layer and a viscoelastic
half-space. A linear Maxwell rheology was assumed
for both the viscoelastic layer and half-space (see
the auxiliary material). This working model of litho-
spheric rheology is consistent with a seismically
accepted crustal model that the Conrad and Moho
discontinuities are the rheologic and chemical bound-
aries separating the upper crust (elastic layer), lower
crust (viscoelastic layer), and uppermantle (viscoelastic
half-space), respectively.
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[16] Figure 4 shows a working dislocation model
for the Mw 7.3 Hebgen Lake rupture based on the
seismic moment tensor analysis of Doser [1985]
and the geodetic models of Barrientos et al.
[1987]. The elastic moduli were derived from the
average crust and upper mantle P-wave velocities of
the Hebgen Lake-Yellowstone region [Smith et al.,
1989]. Two generally east to east-southeast striking
fault segments ruptured during the main shock:
(1) the southern Hebgen Lake segment is 18 km long,
15 km wide, with a dip of 70� SW and an average
slip of 5.5m, and (2) the northern Red Canyon
segment is 18 km long, 12 km wide, with a dip of
50� SW and a slip of 4.6m.

[17] The depths and viscosities of the two layers in
Figure 4 were evaluated to best fit the temporal
changes of baseline lengths across the Hebgen Lake
fault (Figure 3). To do this we applied a Monte
Carlo approach [e.g., Spada, 2001] in which a large
set of a priori possible rheologic models were
randomly selected for producing predictions of
postseismic deformation field. Misfits between these
forward results and the observations were then
calculated and used to identify best fit models whose
misfits are smaller than a given bound.

[18] A set of 20,000 rheologic models was gener-
ated spanning the range of plausible lithospheric
conditions. For each model, four parameters were
randomly selected in the ranges of 15–20 km and
≤40 km for the bottom depths of the two layers,
d1 and d2, respectively, and 1018–1022 Pa-s for both
viscosities, �1 and �2 (Figure 4). The algorithm
VISCO1D [Pollitz, 1997] was run for each model
to estimate predicted rates of baseline change (see
further discussions and examples of VISCO1D
in the auxiliary material). For each baseline, a chi-
squared, w2, function was employed to evaluate
the misfit

w2 ¼ 1

N

XN
k¼1

_L
o
k � _L

m
k

sok

 !2

; (1)

where _L
o
k and _L

m
k are the observed and predicted

rates of baseline changes, sok is the one standard de-
viation uncertainty of the observation, and N is the
number of surveys of the baseline. For each base-
line in Figure 3, rheologic models with calculated
w2 misfits within the lowest 5% interval were ac-
cepted. The models with acceptable fits to all eight
baselines were considered to be the best fit models.

[19] Two best fit rheologic models, shown in
Figure 5, were derived from the deformation mea-
surements. For the baseline group Yellowstone
(YS) that includes four baselines adjacent to the
Yellowstone calderas (Figure 5a), the best fit mod-
els are characterized by a 9 km thick viscoelastic
layer at 17 km depth with mean viscosities of
2� 1019 Pa-s and 5� 1018 Pa-s for the viscoelastic
layer and half-space, respectively. The distributions
of best fit models and the fitted curves of this group
are shown in Figure 6. The mean viscosity of the
lower crust is about four times higher than that of
the upper mantle, and this difference is statistically
significant based on a Student’s t-test: the two-tailed
probability p is 0.0012, indicating that there is a
98.8% chance of significantly different means. Here
we define, by convention, the statistically significant
difference of two means as being p< 0.05.

[20] Models for the baseline group Hebgen Lake
fault (HLF) with baselines straddling the central
and northwest Hebgen Lake fault zone (Figure 5b)
reveal a thicker viscoelastic layer, ~15 km, and
higher mean viscosities, 3� 1021 and 2� 1019 Pa-s
for the lower crust layer and the upper mantle half-
space, respectively, than those from the YS baseline
group (Figure 7). These differences indicate a lateral
variation of lithospheric rheology from northwest to
the southeast in the Hebgen Lake-Yellowstone area,
generally consistent with the large heat flow change
from the Yellowstone caldera (>200mW/m2) to the
Hebgen Lake fault zone (~130mW/m2, see later
discussions).

[21] Note that the viscoelastic modeling algorithm
used in this study [Pollitz, 1997] does not allow for
fault dislocations to extend into the viscoelastic layer.
Thus, the bottom depth of the elastic layer d1, as-
sumed as the upper bound of the brittle-ductile transi-
tion zone, has to be deeper than 15 km as constrained
by the Hebgen Lake dislocation model (Figure 4).
This constraint is consistent with the observed focal
depth maxima distribution of the local seismicity
(B-B′ in Figure 2). Possible spatial variations in the
thickness of the brittle upper crust, which would be
thinner than 15 km for areas with shallow seismicity
and high surface heat flow, cannot be resolved.
Nonetheless, we suggest that the lateral variation of
rheologic properties beneath the Hebgen Lake fault
zone implied by the GPS and trilateration observa-
tions are consistent with the local tectonic character-
istics, in which shallow earthquake focal depths
in addition to high temperatures and magmatic
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deformation sources of the Yellowstone calderas cor-
respond to a much hotter and thus weaker lower crust
and upper mantle [Smith and Braile, 1994].

4. Discussion

4.1. Vertical Deformation From Precise
Leveling Data
[22] While trilateration and GPS measure the hori-
zontal and vertical deformation, leveling surveys
provide additional constraints to measurements of
vertical motion with higher precision, i.e., up to
0.1mm/km. For a large normal-faulting earthquake
similar to the 1959 Hebgen Lake event, the vertical
component of postseismic deformation produced by
the downward hanging-wall slip is the largest com-
ponent of deformation. In this study we also in-
cluded the vertical motion data of the Hebgen Lake
region from three leveling routes [Nishimura and
Thatcher, 2003], measured after the earthquake in

1959, 1960, 1964,1983, and 1987 near the epicen-
tral area (G, H, and I; Figure 1).

[23] These leveling data were compared with verti-
cal postseismic deformations predicted by different
rheologic models. We selected these three leveling
routes from among those in the Yellowstone-
Hebgen Lake region because of their proximity to
the rupture. These vertical-motion data are most likely
related to transient tectonic deformation associated
with the Hebgen Lake earthquake, rather than
tectono-magmatic sources from the Yellowstone
volcanic system.

[24] Figure 8 shows the leveling measurements
plotted together with corresponding vertical dis-
placements predicted by three rheologic models:
(1) The YS model from baselines near the Yellow-
stone calderas (Figure 5a), (2) The HLF model from
baselines across the central Hebgen Lake fault
(Figure 5b), and (3) the single-layer model by
Nishimura and Thatcher [2003]. The three models
predict the observed vertical motion of leveling
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route G equally well, within 1s error range. Models 2
and 3, however, predict the observations better than
the YS model does for routes H and I along the foot-
wall and hanging-wall of the fault, respectively. This
result implies that the HLF model is more plausible
for representing the lithospheric rheology across the
Hebgen Lake fault than the YS mode, similar to the
modeling results shown in the previous section.

[25] Nonetheless, the ~25mm and >100mm jumps
at the north end of route G and the south end of route
H, respectively (Figure 8), are not predicted by any of
the three models. Note that both the G and H leveling
data include measurements made one month after
the 1959 Hebgen Lake main shock, thus afterslip

occurring within this period would be included in
the data and cannot be modeled by viscoelastic re-
laxation [Nishimura and Thatcher, 2003]. Edge
effects caused by the approximation of rectangular
dislocation models to the finite length fault planes
[e.g., Savage, 1998] or other local disturbances such
as ground water level change or benchmark instabil-
ity may also contribute to these discrepancies.

4.2. Lithospheric Rheology and its Relation
to the Youthful Yellowstone Volcanic System
[26] Koseluk and Bischke [1981] suggested that
a crustal doming (vertical) rate of 3–5mm/yr,
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measured by the initial leveling data from 1923 to
1960 around the Hebgen Lake fault and bracketing
the earthquake aftershock zone [Reilinger et al.,
1977], may have resulted from postseismic strain
accumulation. Assuming a maximum stress drop
of 400 bars for this earthquake, they obtained a vis-
cosity of 2.3� 1021 Pa-s below a 20 km thick elastic
layer. Note that the stress-drop of the 1959 Hebgen
Lake main shock determined by Doser [1985] from
seismic data was smaller, ~150 bars, suggesting that
Koseluk and Bischke [1981] results would overesti-
mate the viscosity.

[27] Reilinger [1986] proposed models with a 30–
40 km thick elastic layer overlying a viscoelastic
half-space with a viscosity of ~1019 Pa-s to fit the
measurements of 1923, 1960, 1967, 1975, and

1983 vertical motion from a leveling route that
passes within ~25 km of the epicenter of the Hebgen
Lake earthquake (Figure 1). Nishimura and Thatcher
[2003, 2004] derived similar results from the same
leveling data as Reilinger [1986] plus data acquired
in 1987 [Holdahl and Dzurisin, 1991], with an elastic
thickness of 38� 8 km and a lower viscosity of
4� 1018�0.5 Pa-s for the half-space.

[28] Although the above studies suggested a single-
layer rheologic model for the Hebgen Lake area,
Nishimura and Thatcher [2003] modeled a visco-
elastic lower crust with layer thickness of 18 km
and viscosity greater than 1.2� 1021 Pa-s that could
satisfy the leveling data equally well. Hammond
et al. [2009], in addition, proposed a preferred rheo-
logic model with the viscosities of the lower crust

BIGN-LION

LION-ROOF

R161-D092

R161-V297

0

20

40

60

80

100

120

140

160

B
as

el
in

e 
C

h
an

g
e 

(m
m

)

1975 1980 1985 1990 1995 2000
0

20

40

60

80

100

120

140

160

Year

B
as

el
in

e 
C

h
an

g
e 

(m
m

)

0

20

40

60

80

100

120

140

160

1975 1980 1985 1990 1995 2000

20

40

60

80

100

120

140

160

Year

1018 1020 1022 1018 1020 1022

60

40

20

0

D
ep

th
 (

km
)

60

40

20

0

D
ep

th
 (

km
)

1 2 

0

Baseline Group HLF(a)

(b)

Viscosity 1 (Pa-s) Viscosity 2 (Pa-s)

Figure 7. Best fit rheologic parameters of the Hebgen Lake fault model in Figure 5b. (a) Depth ranges of viscosity
correspond to the thickness of the viscoelastic layer. (b) Fit to baseline length changes. See Figure 6 for more figure
explanations.

Geochemistry
Geophysics
GeosystemsG3G3 CHANG ET AL.: HEBGEN LAKE POSTSEISMIC RELAXATION 10.1029/2012GC004424

9



and upper mantle being 1020.5 and 1019 Pa-s, respec-
tively, to best explain the postseismic relaxation
measured by GPS and paleoseismic data in the
Central Nevada seismic belt, an extensional stress
regime that is similar to the Hebgen Lake area.
These two results agree with our two-layer rheologic
model for the fault zone (Figure 5) within the uncer-
tainties of the model parameters and data. Moreover,
results of the t-test showed significant differences
between the lower crust and upper mantle viscosities
of the HLF and YS rheologic models, which statisti-
cally support the assumption of two-layer structure
for the Hebgen-Lake area.

[29] Although varying views of the distribution of
Earth’s rheological properties and strength have been
proposed [e.g., Bürgmann and Dresen, 2008], our
YS and HLF models imply a more viscous, or stron-
ger, lower crust than the upper mantle. This result
agrees with a hypothesis that the behavior of the con-
tinental lithosphere is dominated by the strength of its
seismogenic layer, typically the upper crust, and that
the continental mantle has no significant long-term
strength [e.g., Maggi et al., 2000]. Thatcher and
Pollitz [2008], in addition, proposed that the upper
mantle has an effective viscosity ~2 orders of
magnitude less than the lower crust at time scales

of postseismic and post-lake-filling relaxations
(<~100 years). Our rheologic models were derived
from surface deformation ~15–40 years following
the earthquake and therefore are supported by the
above conclusions.

[30] One explanation to the less viscous lower crust
in the YS model than in the HBL model (Figure 5)
can be the influence of crustal magma and related
hydrothermal fluids associated with the northwestern
Yellowstone caldera. Jackson [2002] has pointed out
that the input of igneous melts and fluid into the
lower crust can reduce the creep strength dramati-
cally to cause transient lower crust flow. This propo-
sition provides a plausible explanation for the lateral
variation of our modeled rheologic structures, in
which active hydrothermal features observed in the
northwestern Yellowstone caldera may be responsi-
ble for a less viscous lower crust in the YS model.

[31] Temperature-dependent viscosity revealed by
surface heat flow of the Yellowstone-Snake River
Plain and the surrounding Basin and Range can also
be responsible for the lateral variation of litho-
spheric rheology in the Hebgen Lake area. In the
northwest of our study area, the borehole tempera-
ture measurements compiled by Blackwell and
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Richards [2004] reveal a surface heat flow of
~90mW/m2, similar to that of the nearby Basin
and Range. To the southeast of the Hebgen Lake
fault zone, the heat flow data indicate higher
values of ~130mW/m2 near the Yellowstone cal-
dera boundary and >200mW/m2 in the caldera
where direct measurements of 2000mW/m2, likely
caused by the effects of hydrothermal convection,
were recorded. Moreover, hypocenter locations of
Yellowstone earthquakes show that the 90th percentile
of the maximum focal depths range from 5 to 10 km
in the surrounding area of Yellowstone-Snake
River Plain and are less than 6 km beneath the cal-
dera [Farrell et al., 2009; Smith et al., 2009]. The
higher heat flow and shallower earthquake focal
depths, implying hotter and weaker crustal rocks,
in the southeast fault zone relative to the northwest
are compatible with the lower viscosities inferred
from the rheologic model close to the Yellowstone
caldera (the YS model) than that across the fault
(the HLF model).

[32] By combining the above data with rock type,
strain rate, and gravity observations, DeNosaquo
et al. [2009] provided lithospheric strength models
for different thermal regimes of the Yellowstone
area. Their models indicate that the depths of brittle-
ductile transition in the upper crust and lower crust
are about 11 and 27 km, respectively, in the area
immediately adjacent to the Yellowstone caldera,
within which the Hebgen Lake fault zone is approx-
imately located. Although the comparison between
brittle-ductile transition from earthquake focal depths
[DeNosaquo et al., 2009] and rock rheology from
postseismic stress relaxation (this study) may not
be direct, both results consistently show a ductile
lithosphere beneath the Hebgen Lake fault zone at
depths greater than ~20 km.

4.3. Contemporary Postseismic Relaxation
in the Yellowstone-Snake River Plain
Region
[33] The 1959 Hebgen Lake, MT, and the 1983
Borah Peak, ID, earthquakes were the largest historic
earthquakes in the Yellowstone-Snake River Plain
region and thus expected to produce measurable
postseismic deformation in the area. In this section
we applied our derived rheologicmodel (HLFmodel,
Figure 5b) to evaluate the horizontal postseismic
velocities produced by these two large events and
then compared results with contemporary deforma-
tion measured by GPS from 2005 to 2011. For the
Borah Peak earthquake, a dislocation model from

Barrientos et al. [1987] based on mapped fault
scarps and leveling data was used: an 18 km long
and 18 kmwide fault area and 2.1m of coseismic slip
for the southern segment, and 8 km, 8 km, 1.4m for
the northern segment. These two segments are the
main parts of the Lost River fault on which the earth-
quake occurred.

[34] Figure 9 shows the combined postseismic ve-
locities of the two events and the measured contem-
porary horizontal deformation at continuous GPS
sites in the Yellowstone-Snake River Plain region
from 2005 to 2011. Note that the postseismic veloc-
ities are relative to the fixed fault planes of each
earthquake, while the GPS velocities are referenced
in a stable North American framework. Therefore,
we compared the two motions based on relative ve-
locities of GPS stations across the faults (Figure 10).

[35] Figures 9 and 10a reveal that in the Hebgen
Lake area the postseismic motions of P461-P458
and P460-P458 are notable components, ~70%, of
the observed ground deformation, suggesting that
the viscoelastic relaxation is a major transient effect
of the regional (>50 km) extension across the fault.
In a short range of ~30 km across the fault between
stations P456, P457, and P712 and station P458,
however, postseismic relaxation appears to be a
smaller effect, but still ~30%, to the current defor-
mation where high NNE-SSW extensional rates
of ~3mm/yr were revealed by GPS velocities
(Figure 10a). This extension may be partly caused
by the ongoing earthquake activity between the
Hebgen Lake fault and the Yellowstone caldera
(Figure 2); for example the 1985 earthquake swarm
across the northwest caldera boundary [Waite and
Smith, 2002]. South of station P676 into the Snake
River Plain, the postseismic motion decreases to
less than 10% of the contemporary extensional rate
of ~2–3mm/yr (Figure 9). We therefore suggest that
the postseismic relaxation produced a significant
transient signal in the local horizontal velocity and
strain field of the northwest Yellowstone and north-
east Snake River Plain.

[36] In the 1983 Borah Peak epicentral area, the
postseismic relaxation produces nearly the same
motion as the regional extension measured by
GPS, ~1mm/yr in the NE-SW direction between
the footwall (stations P357 and P355) and hanging
wall (stations P352, P353, and 354) of the fault
(Figure 10b). Recall that the HLF rheologic model
was applied to estimate the postseismic motion;
therefore, the changes of the lithospheric structures
between the Hebgen Lake and Borah Peak areas
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were not taken into account. In addition, most GPS
stations of the Borah Peak network only began to
operate in mid-2008, so a longer data window may
be needed to resolve the relatively slow, and possi-
bly time-dependent, tectonic motion in the area
more confidently. Despite these factors, our results
suggest that the contemporary ground motion across
the 1983 Borah Peak epicentral area in the central
Snake River Plain is primarily the effect of visco-
elastic postseismic relaxation.

4.4. Postseismic Response Applied
to the Wasatch Fault Zone, Utah
[37] In this section, we evaluate the postseismic
responses induced by large paleo- and historic earth-
quakes of the Wasatch fault zone in Utah that is in
a similar seismogenic extensional regime as the
Hebgen Lake and Borah Peak earthquakes. Rheolo-
gic working models derived from different geologi-
cal observations in the area are first discussed.

[38] Based on the ages and elevations of the uplifted
shorelines of Quaternary Lake Bonneville rebound

in Utah, several studies have proposed similar
single-layer rheologic models with an elastic
crustal thickness of 25–30 km and mantle viscosity
of 1–3� 1019 Pa-s [Nakiboglu and Lambeck, 1983;
Bills and May, 1987; Bills et al., 1994]. Bills et al.
[1994], in addition, indicated that there was no
compelling evidence for a rheology more complex
than the classic Maxwell model.

[39] We first employed a single-layer rheologic
structure, d= 25 km and � = 2� 1019 Pa-s, to the
Wasatch fault and adjacent East Great Salt Lake
fault where six Holocene paleoearthquakes occurred
500–1200 years ago [McCalpin and Nishenko,
1996; Dinter and Pechmann, 2001; DuRoss et al.
2011], and three historic earthquakes were consid-
ered as possible contributors of postseismic signal
to the current deformation field (Figure 11). The
six paleoearthquakes include the most recent rup-
tures on five of the Wasatch fault segments and
the East Great Salt Lake fault. The three historic
earthquakes are the Mw 6.6 1934 Hansel Valley,
UT, the Mw 5.6 1962 Cache Valley, UT, and the
Mw 6.2 1975 Pocatello Valley, ID, earthquakes. We
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employed paleoearthquake single-segment rupture
models for the Wasatch fault based on Chang and
Smith [2002], with the historic earthquakes and
parameters listed in Table 1.

[40] Figure 11 shows the horizontal postseismic
motion (green arrows) of the Wasatch Front area
produced by these earthquakes. Results show that
the M 6.6 Hansel Valley, UT, earthquake and
the largest paleo-rupture on the Wasatch fault,
~500 years B.P. on a central segment of the Wasatch
fault [McCalpin and Nishenko, 1996], are the dom-
inant sources of the contemporary postseismic
deformation. The point velocities, however, do not
exceed 0.1mm/yr, with relative velocities less than
0.2mm/yr across the fault. These motions are smal-
ler than the GPS-measured extensional rates of the
Wasatch Front of ~1–3mm/yr [Martinez, et al.,
1998; Thatcher et al., 1999; Bennett et al., 2003;
Hammond and Thatcher, 2004; Chang et al.,
2006] and are within the uncertainties of horizontal
velocities of 0.1–0.2mm/yr determined by continu-
ous GPS in the Basin and Range [Davis et al.,
2003].

[41] For an independent evaluation we implemen-
ted the two-layer HLF model described earlier

(Figure 5b) as another rheologic working model.
In addition to the similar extensional-stress regime
and normal-faulting earthquake mechanisms ob-
served in these two areas, comparable lithospheric
rheology revealed by different independent observa-
tions also support the use of the HLF model to the
Wasatch Front area. For example, lithospheric struc-
tures based on the Lake Bonneville deformed shore-
line were characterized by a viscoelastic lower crust
layer at 10–40 km depth with viscosity in a range of
1020–1021 Pa-s [Bills et al., 1994]. The viscosity of
the mantle half-space from this study is ~1019 Pa-s,
similar to that obtained by Nakiboglu and Lambeck
[1983] and Bills and May [1987] from isostatic
rebound of Lake Bonneville. Gourmelen and
Amelung [2005] and Hammond et al. [2009] also
derived similar rheologic models to best explain
postseismic deformations in the Central Nevada
seismic belt of the western Basin and Range.

[42] In addition, the depth to the viscoelastic half-
space of the HLF model, ~30 km (Figure 5b), is con-
sistent with a Moho depth for the eastern Basin and
Range [Smith and Bruhn, 1984]. The low half-space
viscosity, ~1019 Pa-s, may indicate a weaker upper
mantle, which is implied by the averaged high surface
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heat-flow, 90–100mW/m2, observed in the Basin and
Range of Utah [Powell, 1997; Henrikson, 2000].

[43] Figure 11 shows the horizontal postseismic
velocities inferred from the two-layer HLF model.
Similar to the results from the above Lake Bonneville

rheologicmodel, the magnitudes of thesemotions are
smaller than 0.1mm/yr and are therefore less than
10% of the GPS-measured deformation rates in the
Wasatch Front area. Alternatively, Malservisi et al.
[2003] used finite element models with laterally
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Table 1. Dislocation Models for Large Historic Earthquakes of the Wasatch Front

Earthquake
Length
(km)

Top Depth
(km)

Bottom Depth
(km)

Dip
(deg)

Rake
(deg)

Slip
(cm)

1934 Mw 6.6 Hansel Valley, UTa,b 10 0 11 50�E 90� 57
1962 Mw 5.6 Cache Valley, UTc 8 4 10 43�W 102� 12
1975 Mw 6.0 Pocatello Valley, IDd,e 13 2 9 39�W 53� 50

aChen [1988].
bDoser [1989].
cWestaway and Smith [1989].
dBache et al. [1980].
eArabasz et al. [1981].
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varied lithospheric rheology across the Wasatch fault
to evaluate earthquake cycle effects of large Wasatch
paleoearthquakes. Their results indicate that the vis-
coelastic effects near the fault are completely relaxed
at present due to the long earthquake recurrence time
and the long time elapsed since the last earthquake,
consistent with that shown in Figure 11.We therefore
propose that postseismic relaxation has relatively
small effects on the contemporary horizontal defor-
mation field across theWasatch fault zone. Other tec-
tonic processes such as the interseismic loading of
faults are likely the main sources responsible for the
current deformation of the region.

5. Conclusions

[44] Time-dependent changes in surface deformation
following the 1959Mw 7.3 Hebgen Lake, MT, earth-
quake, assessed by trilateration and GPS from 1973
to 2000, were used to estimate lithospheric rheology
associated with this normal-faulting area. These data
were augmented by vertical deformation data from
leveling for the period of 1923 to 1987. Working
models for the lithosphere included an elastic layer
overlying a viscoelastic layer and half-space. Two
best fit models were found: (1) the Hebgen Lake fault
(HLF) model from baselines across the central fault
zone, and (2) the Yellowstone (YS)model from base-
lines at the southeast end of the fault near the Yellow-
stone calderas, with the latter represents a weaker,
less viscous, lower crust and upper mantle than the
former. This lateral variation can be explained by
the proximity of the southeastern end of the Hebgen
Lake fault to the Yellowstone volcanic field, where
very high heat flow and a thin seismogenic layer
have been observed. Employing laterally heteroge-
neous viscoelastic models [e.g., Pollitz, 2003b] is
thus necessary for future studies to approach the
three-dimensional structure of lithospheric rheology
of the Hebgen Lake-Yellowstone area.

[45] Combined postseismic deformation of the
Yellowstone-Snake River Plain produced by the
Hebgen Lake and the 1983 Mw 6.9 Borah Peak, ID,
earthquakes was estimated based on the above HLF
model. Comparison of the results with the contempo-
rary velocity field from continuous GPS data suggests
that the postseismic relaxation is a notable signal in
the horizontal deformation field of the northwest
Yellowstone and the eastern Snake River Plain.

[46] Rheologic models from the Hebgen Lake region
and the Late Quaternary rebound of Lake Bonneville
in the eastern Basin and Range were both examined
to evaluate the combined postseismic relaxation of

six paleoearthquakes and three M ≥ 5.6 historic
events in the Wasatch Front area. With horizontal
motion smaller than 0.1mm/yr, the postseismic
deformation thus has minor effects on the contem-
porary E-W horizontal deformation of the Wasatch
fault zone observed by GPS of ~1–3mm/yr.
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